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On the transition to planing of a boat 
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This paper is concernedwith the problem of the transition to planing of a boat. A steady- 
state nonlinear solution of the problem is obtained using a theory of fluid sheets for 
two-dimensional motion of an incompressible inviscid fluid contained in the paper of 
Green & Naghdi (1977), together with appropriate jump conditions demanded by the 
the,ory. The motion of the fluid is coupled with the motion of a free-floating body and 
detailed analysis is undertaken pertaining to such features as the sinkage, the bow-up 
trim angle and the determination of the propulsion force. In particular, the results show 
that the governing mechanism of the hump speed phenomenon is the change in the 
bow-up trim angle of the boat. The differential equations and the relevant boundary 
conditions of the problem are reduced to a system of essentially algebraic equations 
whose solutions are obtained numerically. 

1. Introduction 
This paper is concerned with the nonlinear steady-state solution of the problem of 

the transition to planing of a two-dimensional boat; the term ‘two-dimensional’ boat 
is used here to indicate a boat whose beam (or width) is very large. Although the 
problem as treated here is concerned with the motion of a boat moving with a constant 
horizontal velocity over a fluid whose equilibrium depth is constant, i t  is mathe- 
matically more convenient to consider the equivalent problem of the steady two- 
dimensional motion of an incompressible inviscid fluid in the absence of surface 
tension past a stationary free-floating body on an otherwise free top surface of the fluid. 
Even when attention is confined to such steady two-dimensional motions of an inviscid 
incompressible fluid over a level bottom, the difficulties associated with obtaining 
exact analytical solutions of the (nonlinear) three-dimensional equations of motion 
and appropriate boundary conditions are so far insurmountable. It is therefore useful 
to consider alternative approaches. The most common alternative is to simplify the 
three-dimensional equations of motion by a systematic linearization procedure. 
Another possibility is to derive for a given class of problems alternative nonlinear 
equations of motion by asymptotic techniques (see e.g. Peregrine 1972). Still another 
alternative is to construct an appropriate theory by direct approach based on the 
concept of a directed fluid sheet (Green & Naghdi 1976~). In  this paper we pursue the 
latter alternative and utilize the differential equations of motion of the restricted 
theory of a directed fluid sheet in the form derived by Green & Naghdi (1977). 

Although the present formulation of the problem of steady two-dimensional flow 
past a stationary obstacle is sufficiently general to include a study of the problem of 
the squat of a ship or the flow past a sluice gate of a general shape, in this paper we 
confine attention to the problem of transition to planing with emphasis on the inter- 
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relationship between the maximum bow-up trim angle and the so-called hump speed. 
[This terminology usually refers to the speed at which a boat experiences maximum 
resistance to motion. Additional remarks concerning a suitable definition of the hump 
speed are made later in this section and in $5.3 

Before proceeding further, it is desirable to indicate briefly the manner in which the 
analysis of the problem of a free-floating boat is carried out in the present paper. 
Basically, we begin by specifying the orientation of the boat or ship (relative to the 
fixed bottom of the fluid), use the consequence of the linear momentum principle to 
determine the fluid flow past the obstacle, and then analytically obtain the pressure 
distribution on the fluid-boat interface. After calculating the drag, lift and moment 
exerted by the fluid on the boat, the boat’s orientation is adjusted until the appropriate 
equations of linear momentum and angular momentum associated with the motion of 
the boat are satisfied. To elaborate, we first ‘guess’ the orientation of the boat and 
calculate the forces and moment (about the boat’s centre of mass) which are exerted by 
the fluid on the boat. Then, by iteration, we continue to correct the initial ‘guess ’ until 
these forces and moment exactly balance those due to the boat’s weight and propulsion 
system. Details of the numerical procedure used in the paper are discussed in $5 .  

In  the rest of this section we elaborate on the contents of the paper, along with 
relevant background pertaining to various aspects of the planing problem. The main 
kinematics and the differential equations governing the two-dimensional motion of 
an incompressible, homogeneous, inviscid fluid sheet are summarized in $ 2. These 
equations, which include the effects of gravity and vertical inertia, are those of a 
restricted theory of a directed fluid sheet (Green & Naghdi 1977) and are specialized 
here for propagation of fairly long waves over water of constant initial depth. Next, 
in $ 3, attention is called to the fact that the steady-state equations which describe the 
shape of the free surface may be integrated in terms of an elliptic integral of the first 
kind. The steady-state equations can also be solved analytically when the location 
of the top surface is specified, rather than being free and unknown. Evidently, the 
problem of fluid flow past an obstacle sketched in figure I t  may best be analysed by 
considering the solutions in separate regions of flow, labelled as regions I, 11, I11 in 
figure 1, and by matching these solutions with the aid of jump conditions demanded 
by the theory and the particular problem under consideration. These jump conditions 
are recorded in an appendix at the end of the paper. Boundary conditions are also 
imposed which reflect the assumption that far ahead of the body the fluid flows as a 
uniform stream. 

The equations of motion of a free-floating boat (regarded here as a rigid body) are 
discussed in $4  and provide the necessary coupling between the fluid motion and the 
motion of the boat. For the fairly general hull shapes considered in the present paper, 
the equations describing the orientation of the free-floating body involve certain 
definite integrals associated with the forces and moment that the fluid exerts on the 
body, but these equations are essentially algebraic. Thus, in $4, the analysis of the flow 
past a free-floating body is reduced to solving a system of essentially algebraic 
equations. 

The motion of a planing craft - as speed is increased from zero - is usually charac- 

t Our designation of x3 and x4 (rather than x2 and 2,) on the abscissae in figure 1 is simply for 
later notational consistency. 
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terized by an increase in the bow-up trim angle to a maximum, followed by a decrease 
in trim angle. Here we define the hump speed as the speed at  which the bow-up trim 
angle reaches its maximum value and consider a planing speed to be any speed greater 
than the hump speed. [Most authors define the hump speed as the speed for which 
resistance to motion is a maximum. The difference between this and our definition is 
discussed in $5.1 For the purpose of this paper, we need to recall only the works of 
Squire (1957) and Cumberbatch (1958), but call attention to a more complete account 
of the planing problem by Wehausen & Laitone (1960, pp. 587-592). 

Both Squire (1957) and Cumberbatch (1958) utilize the linearized three-dimensional 
equations of an incompressible invisoid fluid for two-dimensional irrotational steady 
motions. They consider planing over water of infinite depth and use certain results from 
Lamb (1932, $$ 242-244) and develop an integral equation which relates the pressure 
distribution on the top surface of the fluid to the shape of the top surface. Then, after 
approximating the pressure distribution on the hull, the associated hull shape may be 
calculated by using the integral referred to above. In order for this associated hull shape 
to closely resemble the desired hull shape, other approximate (and perhaps more 
complex) pressure distributions must be considered. While such a procedure may be 
used to approximate more general hull shapes, it can be accomplished only at the 
expense of increased analytical complexity. More specifically, Squire (1 957) considers 
the planing of a wedge over water of infinite depth, and he restricts the motion of the 
wedge in such a manner that the bow-up trim angle is always constant. He further 
assumes that for all speeds above zero the location of the trailing edge is so specified 
that the fluid separates smoothly from the bottom corner of the wedge and the fluid 
pressure is atmospheric there. In  order to explain the hump speed phenomenon, Squire 
(1957) introduces a frictional force. His analysis appears to suggest (see figure 9 in 
Squire’s paper) that, at  least for crafts which plane with a constant trim angle, the 
hump speed phenomenon is entirely controlled by frictional effects. A further contri- 
bution to the subject by Cumberbatch (1958) deals with the problem of transition to 
planing a t  high Froude numbers of crafts with hull geometries which are plane, 
parabolic or some combination of the two. 

The developments of $$3-4 are readily applicable to the problem of transition to 
planing of a self-propelled free-floating boat of general hull shape over water of finite 
depth? with a level bottom. Since our steady-state formulation of the problem ( $ 5  3-4) 
is given in the context of the nonlinear theory, the determination of the location of the 
trailing edge is part of the solution: it is not specified as in the papers of Squire (1957) 
and Cumberbatch (1958), but rather is determined by the condition that the fluid 
pressure be atmospheric there, An example of the transition to planing of a boat-like 
body is solved in $ 5 .  With the aid of a computer program, the definite integrals 
associated with the forces and moment that the fluid exerts on the boat are evaluated 
by a Gaussian quadrature algorithm and the essentially algebraic equations describing 
the orientation of the free-floating boat are solved by a Newton-Raphson iteration 
procedure. The complete solution of the problem involves also the solution for the 

t The term ‘finite depth’ is used here to distinguish between the analysis of the present paper 
and those of others cited earlier in this section which are valid for infinite depth. We emphasize 
that the theory of a directed fluid sheet employed here is not applicable to water of infinite depth 
and that the system of differential equations (2.6)-(2.7) is necessarily approximate compared to 
the (exact) system of three-dimensional equations of motion. 
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shape of the free surface in the trailing region characterized by a nonlinear ordinary 
differential equation whose solution is in the form of a cnoidal wave. While a solution 
of this kind is analytically well understood, it is more convenient to solve the dif- 
ferential equation numerically by a Runge-Kutta integration scheme. Various aspects 
of this solution are exhibited in figures 3-5. These include the orientation of the boat 
in different stages of planing (figure 3) and the locations of the leading and trailing 
edges (figure 5). The results also show (see figure 4(b, c)) that the hump speed can be 
predicted by a purely inviscid theory and that the controlling mechanism is the change 
in the bow-up trim angle. 

It is well known that an inviscid theory is incapable of completely describing the 
drag experienced by a boat or ship. Nevertheless, it is generally assumed that an 
inviscid theory can accurately predict the orientation of a boat or ship relative to the 
fixed bottom. At the end of $5, we briefly discuss the results of a certain calculation 
for the transition to planing of a boat in which account is taken of frictional effects 
through the use of the coefficient of friction given by the I.T.T.C. 1957 model-ship 
correlation line. These results of this numerical example suggest that the sinkage and 
trim predictions of the purely inviscid theory are quite accurate. 

Our general developments ($0 3-4), as well as the specific example of the problems 
of planing in $ 5,  are concerned with the fluid flow past a free-floating body whose hull 
geometry has continuous curvature. These results are not immediately applicable to 
a hull shape which does not have continuous curvature, such as the wedge considered 
by Squire (1957). In  order to study the transition to planing of a wedge, we need to 
modify slightly the formulation contained in $9 3-4. Thus, the necessary modifications 
are discussedin $6 and examples of the transition to planing of a wedge and a wedge-like 
boat are solved in $7. [It should be noted that it is necessary to distinguish here 
between a wedge which has discontinuous slope at its bottom corner, and wedge-like 
boat which has continuous curvature.] It is shown (figure 6) that except for near-zero 
speed and the hump speed, the idealizations associated with the planing of a wedge 
are quite useful in accurately predicting the sinkage and trim of the wedge-like boat. 

Before closing this section, it is desirable to indicate why the theory of a directed 
fluid sheet (Green & Naghdi 1976a, 1977) can be applied to the problem of transition 
to planing of a boat. The (three-dimensional) problem under discussion involves a boat 
in contact with a body of water of finite depth; the former is regarded as a rigid body 
and the latter is modelled here by a directed fluid sheet. In  this connexion, we first 
note that the system of differential equations employed accounts for the effect of 
vertical inertia, is translation invariant and satisfies exactly the boundary conditions 
on the top and bottom surfaces of the fluid sheet. Moreover, the theory is sufficiently 
general to allow: (1) the prescription of appropriate jump conditions for modelling the 
fluid behaviour at the attachment point of the leading edge of the boat; (2) the determi- 
nation of the pressure on the bottom surface of the boat (due to the fluid motion); and 
(3) the determination of the detachment point in the trailing edge of the boat. 

Clearly the transition problem is nonlinear in nature; and the source of the non- 
linearities, which manifest themselves in the solution, are mainly those arising from 
(a) large changes in the orientation of the boat including the trim angle, ( b )  the manner 
in which the resultant forces and moment at the leading edge of the boat are accounted 
for, (c) the treatment of the detachment point in the trailing region and (d) the shape 
of the free surface in the trailing region. Although the theory of a directed fluid sheet 
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used is an approximate nonlinear theory relative to the exact three-dimensional theory, 
it is nevertheless capable of allowing for all of the above nonlinearities and the present 
solution may at least be regarded as providing limited information about a difficult 
problem. 

2. Basic equations 
We record here the nonlinear differential equations governing the two-dimensional 

motion of an incompressible, homogeneous, inviscid fluid sheet. The two-dimensional 
motion is confined to the x, z plane of a fixed system of rectangular Cartesian co-ordi- 
nates (x, y, x )  in which the velocity component in the y direction is zero, and the 
differential equations are appropriate for propagation of fairly long water waves. These 
equations, which include the effects of gravity andvertical inertia, follow by specializa- 
tion from more general results of Green & Naghdi (1977) derived in the context of a 
restricted theory of a directed fluid sheet. Additional background material on recent 
developments in the direct formulation of the theory of fluid sheets, based on a con- 
tinuum model called a Cosserat (or a directed) surface, may be found in a recent paper 
by Naghdi (1979). 

We recall that a directed surface V comprises a material surface and a director 
assigned to every point of the material surface. Let the particles of the material surface 
of V be identified with a system of convected co-ordinates Ba (a = 1 , 2 )  and let the 
surface occupied by the material surface in the present configuration of V at time t be 
referred to as d. Let r and d denote the position vector of a typical point of d and the 
director at the same point, respectively. Then, a motion of the directed surface V 
is specified by 

r = r(Ba,t), d = d(Ba,t) (2 .1~2 ,  b )  

and the velocity and the director velocity are dehed  by 

v = f ,  w = d ,  (2 .2a ,  b )  

where a superposed dot denotes the material time derivative holding ea fixed. With 
reference to the rectangular Cartesian co-ordinates introduced earlier and in the 
context of the restricted theory of a directed fluid sheet mentioned above, the position 
vector r and the director d can be represented in the form 

r = ze,+ye,++e,, d = q5e3 (9 > 0) ,  (2 .3a ,  b )  

where (el, e,, e,) are right-hand orthonormal base vectors along the Cartesian co- 
ordinate axes and where x, y, q?, q5 are functions of Oa, t .  The specification of d in the 
form (2 .3b )  can always be made in one configuration even in the context of a more 
general theory of a directed fluid sheet, but the director will not necessarily remain 
parallel to e3 throughout the motion. However, the theory discussed here (Green & 
Naghdi 1977) restricts the director to remain parallel to a fixed direction for all time. 

For two-dimensional fluid motions confined to the x, z plane, we may identify y 
with the convected co-ordinate e2 and consider the motions in the x, x plane specified 
by O2 = 0. Thus, in place of (2 .3a ,  b ) ,  we may write 

r = z(B1, t )  e, + +(el, t )  e,, d = $(el, t )  e,, (2 .4a ,  b )  
12-2 
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where x ,  11, $ are now different from the corresponding functions in (2.3). Also, the 
velocity and the director velocity for two-dimensional motions in the x ,  z plane can 
be written as 

v = ue, + he,, w = we,, (2.5a, b) 

u = i ,  A = # ,  w = $ .  (2.5c, d) 

Then, the condition of incompressibility and the equations of motion over a level 
bottom are given by the following two sets of nonlinear partial differential equations 
(Green & Naghdi 1977): 

w+$ux = 0, ( 2 . 6 ~ )  

(2.6b, c, d )  

(2.7a, b) 

where the subscripts denote partial differentiation with respect to x and the scalars S 
and s given by (A 3) of the appendix are arbitrary functions of x ,  t .  The various symbols 
in the above equations are defined as fol1ows:t 

and 
- 8PPz - s + S x  = 0, + $ P P X  -P$x - (9S)X = 0, 

p* = the m a s  density of the fluid; 

$ = the magnitude (or length) of the director d; 

g = the constant gravitational acceleration; 

/3 = the vertical location of the top fluid surface relative to a fixed system of 

Cartesian co-ordinate axes ( x ,  y, z ) ;  

$ = pressure in the fluid at its top surface; 

p = pressure in the fluid at its bottom surface; 

p = the Lagrange multiplier, i.e. an arbitrary function of position and time; 

also, the fixed level bottom is specified by 
- 
P = xe,,  

and the top surface by 
a = xe1+ 8 ( x ,  0 (33, 

where, in obtaining (2.8), without loss in generality, we have identified the fixed level 
bottom of the fluid with z = 0 in the x ,  z plane. 

For steady-state motions, the equations of motion (2.6) reduce to 

($u)x = 0, (2.10) 

(2.11a, b, c) 
P*$UUX = PPx-pw p * W x  = - p * g $ + P - $ ,  &p*$uw, = -&( f j+P)+p /$ .  

t Our notation for the gravitational acceleration is different from that of Green & Naghdi 
(1976a, 1977) who employed g* instead of g used here. Also the mass density of the fluid in the 
three-dimensional theory is designated as p* in order to maintain continuity with previous work 
(Green & Naghdi 1976a, 1976b, 1977) in which the symbol p is used to denote the mass density 
per unit area of the fluid sheet. The latter is related to p* by (50), of Green & Naghdi (1977). 
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Centre of mass (cm) 

1 - / 1; /I/ / ;1 /I; /I, / / / / / / / / / / / / / / / / / / 
u1 

x3 

FIQUF~E 1. A sketch of fluid flow past a boat-like body 
showing different regions referred to in the text. 

Green & Naghdi (19763) have shown that the theory which results in the system of 
equations (2.6) can be derived from the three-dimensional theory by employing the 
kinematic assumption that 

p = r+e3+e3, {2:12) 

where e3 is a convected co-ordinate. Corresponding to thevaluese3 = 2 4 the expression 
(2.12) locates the top and bottom surfaces, respectively. With the help of (2.8), (2.9) 
and (2.12), it can then be shown that for a level bottom the quantities $ and 4 are 
related to /3 by + = 48 = 44, 9 = B. (2,13a, b )  

As already noted by Green & Naghdi (1977), in the context of the restricted theory 
of a directed surface, the system of equations (2.6) can be solved independently of the 
system (2.7). The latter may be satisfied by a specification of the arbitrary quantities 
s and S. 

3. The motion of a fluid past a boat-like body 
Consider a boat moving in the x direction with a constant horizontal speed over a 

body of water whose bottom is level. In  describing and analysing the motion of the 
boat, it is mathematically more convenient to consider the equivalent problem of 
steady motion of a fluid past a boat-shaped body (see figure 1). Thus, far ahead of the 
boat the fluid is assumed to flow as a uniform stream; and, in general, at the boat’s 
leading edge (defined by x = x3 in figure 1 ) there may be some back flow of fluid forming 
a spray. In  addition, the fluid separates smoothly from the boat’s trailing edge (defined 
by x = x4 in figure l) ,  forming a standing wave. Given the boat’s characteristics such as 
its shape, its weight and suitable information concerning a model of the propulsion 
system, e.g. the line of action of an equipolent propulsion force, our objective is to 
determine (a) its orientation relative to the fixed bottom of water, (b) the propulsion 
force required to maintain its speed and (c) the shape of the free surfaces both ahead 
of and behind the boat. 



352 P .  M .  Naghdi and M .  B.  Rubin 

Although the boat drag cannot be completely described by treating the fluid as 
inviscid, we expect that the predicted orientation of the boat and the wave pattern 
behind it will be accurately described by the inviscid theory. At present, the complex- 
ities of the boat problem are so great that the exact analysis of the problem via the 
nonlinear three-dimensional equations is prohibitive. In view of these difficulties and 
since it is still important to obtain some information about the mechanisms (or the 
primitive physical bases) which characterize the motion of a boat, it is natural to  
consider alternatives to the three-dimensional theory. As already noted in 9 1, here 
we utilize the equations of the theory of directed fluid sheets summarized in $ 2  and 
model the main features of the physical problem under consideration as a fluid sheet 
flowing past a boat-shaped body (see figure 1). Furthermore, we confine attention to 
boat shapes and motions for which the hull can be specified uniquely by the function 
/3 = $ representing the vertical location of the top surface. This restriction implies 
that the hull is never vertical. For definiteness, we also require the curvature of the 
hull/3,, = $= to be nonnegative. [If the hull curvature $,,is negative, then cavitation 
pockets (i.e. small regions bounded by points at which the fluid loses and regains 
contact with the boat’s hull) may occur under the hull. This would require sub- 
dividing the fluid medium into more regions than are considered here.] 

In  the analysis of the above problem, i t  becomes necessary to consider two types of 
fluid regions: (1)  one for which the top surface is free and on which f3 equals the constant 
ambient pressurep,; and (2) another for which the top surface is specified and on which 
@ is unknown. First, we specialize the system of differential equations (2.10)-(2.11) to 
one applicable to a fluid region in which the top surface is free. Thus, after setting 
9 = po, we may integrate (2.10) and then rewrite the system of equations (2.10)-(2.11) 
as 

$u= k ,  p*k2($) z = -PX, (3.1 a, b )  

where in obtaining (3.1) use has been made of (2.12), k is a constant of integration 
representing the volumetric flow rate per unit width and we have introduced the 
notations 

P = p - p o $ ,  P = ?-$lo. (3.2a, b )  
- 

Integration of (3.1 b )  at once yields 
P = p*[S- k 2 / # ] ,  (3.3) 

where S is a constant of integration. [The constant of integration in (3.3) and elsewhere 
in the paper need not be confused with the temporary use, for a different purpose, of 
the same symbol in $ 2  and in the appendix.] Also, from ( 3 . 1 ~ )  we have 

Next, we substitute (3.3) and (3.4) into (3 . ld) ,  multiply the result by &/(b and 
integrate to obtain 

@2$: = - +- 2&b2 - 2/34 -k k2, (3.5) 
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where R is another constant of integration. The last differential equation may be 
integrated in terms of an elliptic integral of the first kind (see von K&rm&n & Biot 1940, 
p. 121) and the general problem of steady two-dimensional motion over a level bottom 
is seen to be soluble when the upper surface is free. 

We now consider the second type of region mentioned above and specialize the 
system of differential equations (2.10)-(2.11) to one applicable to a fluid region in 
which the top surface is specified. In this case, @ is an unknown and must be determined 
as part of the solution. Again, we use (2.12), integrate (2.10) and rewrite the system 
of equations (2.10)-(2.11) as 

(3.6a, b )  

The expressions for ?r, andp  from ( 3 . 6 ~ )  and (3.6d) are seen to be 

Substituting (3.7b) into (3.6b), dividing by 4 and integrating, we deduce that 

where B is a constant of integration. Also, substitution of (3.8) into (3.7a, b) yields 

5 =po+p* [ B - - - - + k z ( $ )  1 k2 ” +gkS$],  
2 P ( 3 . 9 ~ )  

k2 
P =Po$+P* p9-f992-@(1+49:)]. (3.9!) 

Since the function 9 is specified in the region under discussion, it is clear that all 
kinematical and kinetical quantities are determined once B and k are known. 

In addition to the two systems of equations (3.1) and (3.6), we can derive a Bernoulli- 
type integral for the steady motion of a fluid of variable initial depth when the top 
surface is either specified or is free. Multiplying (2.11 a) by u, (2.11 b) by A, (2.11 c) by 
w, adding the results and using (2.10) and (2.13), we may integrate to obtain 

p*$u[#uZ+ &.us+ 29)l +pu = c, (3.10) 

where C is a constant of integration. [It may be noted that, since in the above develop- 
ment @ is an arbitrary function of x and t ,  the results (3.8), (3.9) and (3.10) hold even if 
surface tension is included. A Bernoulli integral of the type (3.10) when the surface 
tension is included and the top surface is free (rather than specified) was given 
previously (Green & Naghdi 1976b).] 

In the context of the present direct approach, the boat problem can be analysed by 
considering separately the three regions labelled I, 11, I11 in figure 1. In regions I 
and 111, the top surface is taken to be free and in region I1 the top surface is specified 
in the sense that it is in contact with a free-floating (or a fixed) body. The system of 
equations (3.la), (3.3), (3.4) and (3.5) describe the flow in regions I and 111, while 
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(3.6a), (3.8) and (3.9) represent the solution for the flow in region 11. As indicated 
above, the solution of (3.5) for qi is expressible in terms of an elliptic integral of the h t  
kind; and, then, the remaining quantities u, P and P can be calculated from (3 . la) ,  
(3.3) and (3.4). Hence, in the context of the theory utilized here, in order to obtain a 
uniformly valid solution for the whole region - 00 < x < 00, we need to consider 
appropriate conditions to match the solutions in regions I, 11,111. This matching will 
be accomplished by using the jump conditions associated with the integral balance 
laws of the basic theory. But before introducing these matching conditions, special 
attention must be given to the boat’s leading and trailing edges. 

Due to the two-dimensional character of the theory utilized, we anticipate that a t  
the leading edge of the boat the depth qi will be continuous but the slope qi, of the top 
surface may be discontinuous (see figure 1). In  the event that 9, is discontinuous a t  
the leading edge, an examination of (3.8) and (3.9 a)  reveals that the pressures 9 and jj 
may be unbounded there, while p will remain bounded. Keeping this background in 
mind, in conjunction with the equations of motion (3.6) we introduce the resultants 

Fl = lim @qi,dx, F3 = lim (3.11a, b) 

( 3 . 1 1 ~ )  

which are similar to those employed by Caulk (1976) in a different context. It will be 
shown later that the resultants (3.11) can be used in certain situations to model the 
force that the ‘spray root’ exerts on the boat’s leading edge. 

We now recall from the appendix of this paper the appropriate form of the jump 
conditions (A 9) needed to match the solutions on either side of the leading edge. Thus, 
with the mass density p* continuous, we have 

wnS = 0, (3.12 a) 

I [ i p * q 4 u ( u * + ~ W * + g ~ ) + ~ n 3  = -a. (3.12 e) 

In the above formulae, the notation [Ins stands for the jump in f across x = x3, i.e. 

m3 = f $ -fi = f lx=e-Q -flx=zs, (3.13) 

and the function on the right-hand side of (3.12e), which requires a constitutive 
equation, represents the rate of dissipation of energy per unit length introduced in the 
energy jump given by the last of (A 4).  We also note that the jump condition associated 
with angular momentum is identically satisfied in view of the fact that r and d in 
(2.3) are assumed to be continuous and hence 

~ $ 1 1 ~  = 0. (3.14) 

Since the fluid is assumed to separate smoothly from the boat’s trailing edge, the 
slope q4x of the top surface of the fluid sheet remains continuous. Consequently, the 
pressures @ and p are bounded there and the resultants corresponding to (3.11 a, b, c) 
vanish. Therefore, in the absence of the resultants, from (3.12) the matching conditions 
associated with the trailing edge are wn4 = 0, (3.160) 
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1[p*4~2+pn~ = 0, U ~ P * # U W ] ~  = 0, I J&~*$UWJ~ = 0, (3.15b, c, a) 
IIAP*#U(U~+ iw2 + 94)  +pun4 = 0, (3.15 e )  

where again the condition associated with angular momentum is identically satisfied 
since 

wn4 = 0 (3.16) 

and where the notation (3.13) has been used with x3 replaced by xp. It should be noted 
that not all conditions in (3.15) and (3.16) are independent. In particular, with the 
help of (3.15a, b, c )  and (3.16), the jump in director momentum (3.15d) and energy 
(3.15 e) are identically satisfied. 

It is convenient to summarize here the equations and the solutions associated with 
the three regions in the boat problem. 

Region I : 
#u = k,, (3.17a) 

2 

( 3 . 1 8 ~ )  

(3.18d) 

- - -g#3+2R,#2-2S3#+k~, (3.19d) 

C3 = +p*#u(u2 + #w2 + 99) +PU = p*k,R, +pok,. (3.19 e) 

In  (3.17)-(3.19), k,, k,, k,, C,, C,, C,, S,, S,, R,, R, and B are all constants. Once the 
points x, and x4 are determined, the conditions (3.12) and (3.14)-(3.16) can be used to 
match the solutions in regions I, I1 and I11 to obtain a uniformly valid solution for the 
whole region. 

With the help of (3.17), (3.18), (3.19) and the matching conditions (3.12), (3.14), 
(3.15) and (3.16), we combine the solutions in regions 1-111 to obtain 
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(3.20h, i) 

(3.20j) 
kZ 

J53 = hP* (K3- KZ), 
3 

where for convenience we have introduced the additional notations 

kl = k ,  9s = H3, (3.21a, b )  

# i x  = K2, #ix = K,, #i = H4, # i x  = K4, (3.21c, d ,  e,f) 

and have evaluated S3 in (3.209) by using (3.19d), (3.20) and (3.21). When k vanishes, 
it follows from (3.8), (3.11a), (3.20e) and (3.20h) that F, = 0 and B = R,. 

Next, we turn our attention to the boundary conditions. Recalling that far ahead of 
the boat we have assumed the fluid to flow as a uniform stream, we impose the 
conditions that 

$+Hl ,  # x + O ,  p+poHl+&p*gH:,  u+ul as x+ -m, (3.22a, b, c, d )  

where H, and u1 are constants and we require u1 >, 0, since we are concerned here with 
fluid flow towards the bow of the boat. With the help of (3.17) and (3.22) we conclude 
that 

Introducing the dimensionless quantities 

and the Froude number F associated with the equilibrium depth H,, 

(3.25) 

(3.26) 

the differential equation (3.24) and the condition ( 3 . 2 2 ~ )  can be written in the form 

&F2@ = ( l - $ ) z ( F 2 - $ ) ,  $+l  as if+ -a. (3.27a, b)  

If we confine attention to speeds u1 for which F < 1, then from (3.27) the only solution 
of (3.24) consistent with the boundary condition ( 3 . 2 2 ~ ~ )  is the uniform stream solution 

# = H,.  (3.28) 

Before closing this section we discuss the conditions used to determine the location 
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of the boat’s leading and trailing edges. Since the depth is continuous, the location x3 
of the boat’s leading edge is determined by solving the equation 

$12=2+8 = H3. (3.29) 

If the speed is such that F < 1, then from (3.28) we have H3 = H ,  which is specified. 
On the other hand, if F 3 1, then (3.28) is a possible solution of (3.27) but it is not 
necessarily the only solution. In  such cases, additional information is required in order 
to determine the value of H3,  the location of the boat’s leading edge and the appro- 
priate solution for the free surface in the leading region. Throughout this analysis we 
have assumed that the fluid leaves the boat’s trailing edge smoothly, so that at the 
trailing edge the matching conditions are given by (3.15) and (3.16). Although these 
conditions require continuity of various quantities, they do not provide any statement 
about $3, the pressure in the fluid at  its top surface. Physically we expect the fluid to 
maintain contact with the boat’s trailing edge until the pressure there becomes equal 
to the atmospheric pressure, at which point the fluid separates from the boat. The 
boat’s trailing edge, located by x = x4, is then determined by requiring the pressure $3 
to be equal to po.i  Thus, in line with these observations and with the help of (3.18c), 
( 3 . 2 0 ~ )  and (3.21a), we impose the following condition 

(3.30) 

from which x., can be determined. Once the quantities H,,  u,, B3 and @ are specified 
and the differential equations (3.17d) and (3.19d) are integrated subject to the condi- 
tions (3.21b) and (3.21 e, f), respectively, the complete flow past a given boat-like body 
is determined. 

4. Equations governing the motion of a free-floating boat-like body 
We first consider here the effect of the fluid motion on a boat-like body whose hull 

geometry has continuous curvature, and then formulate the coupled problem in 
which the boat adjusts its orientation according to the fluid motion. Let F and x, 
denote, respectively, the position vector to points on the boat’s bottom surface and 
the position vector of the centre of mass of the boat. Then, referred to base vectors el 
and e3, these quantities can be written as 

and 
F = xel+$e3 

x, = x,el+zme3. 

The net force S a n d  the net moment &(about the centre of mass) acting on the boat’s 
bottom, each per unit length in the y direction, arise from the pressure difference 
j3 -po and are defined by 

&= - Jz (’-%&) ($-p0)($2e1-e3)dx* (4.3b) 

t A condition similar to this was employed by Keller & Weitz (1957) in a different context. 
After this paper was completed, it was brought to our attention that a similar condition waa also 
used by Haussling & Van Eseltine (1976) in their numerical solution of planing-body problems. 
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[In the literature on naval architecture pertaining to ship design, these quantities are 
often referred to as forces ‘per unit beam’.] Remembering that the pressure fj may 
become unbounded at the boat’s leading edge, i t  is convenient to define the total drag 
gT, the total lift ZT and the total moment AT (about the boat’s centre of mass) and 
separate each of these into two parts: one part identified with a subscript R (e.g. 
gR) arising from the unboundedness of fj at the boat’s leading edge and the second part 
identified with a subscript P (e.g. gP) due to the integrated effect of the pressure 
difference fj-po exerted by the fluid on the boat’s hull. Thus, we introduce the fol- 
lowing definitions: 

9 T  = B R + g p ,  Z T  = 9 R + Z p ,  A T  = AR+&p, (4.4a, b, c) 

m+6 
gR= -lim (@-Po)4xa% % = - 1; ( f j - P 0 ) 4 x d x ,  (4 .44  e) 

6-.01xs--d 

9 -1im (+Porn, =zPp = !I3‘ ( $ - P 0 ) d x ,  (4.4f, 9 )  
- d t , s , - d  

X S f d  

x3+8 

8-0 1x3 - d 
A’ = -1im (fj -Po)  [ ( x  - %n) + (4 - %7rt) 4XIdX’  (4.4h, i) 

- 4 p =  -~~(P-Po)[(~-z,)+(~-r,)4xl~~’ (4.4.j) 

and then write 
9= g T e 1 + z T e , ,  A= ATe2.  (4.5a, b)  

Since po  and q5x are bounded and q5 is continuous, with the use of (3.11) and (4.4) the 

= -F1, 9 R  = -+(F3+2L3),  ( 4 . 6 ~ ’  b )  

( 4 . 6 ~ )  

quantities gR, ZR and AR may be represented as 

= #3 - %m) (F3 + 2L3) - (H3 - z m )  4, 
where in obtaining (4.6) use is made of the fact that 

x3+8 
4(F3 + 2L,) = - lim fj ax. 

8-0 1x3- d 
(4.7) 

Since the terms gR, ZR, AR in (4.6), which involve resultants Fl, F,, La, arise from 
the unboundedness of the pressure 9, we observe that in certain situations they may be 
used to model the effects of the spray root on the boat’s leading edge. In such situations 
we identify the resultant drag BR with the horizontal drag due to the spray root and 
write? 

k2K; @Hl 
Hl +k’ 1 -  p*- gR= -F - 4  

where use has been made of (3.20h). It should be noted that in writing (4.8) we have 
restricted attention to situations for which the solution (3.28) holds. Recalling that 
the only energy-dissipating mechanism in this flow is that of spray formation, the 

t It will be seen in $85 and 7 that, in the examples of the transition to planing of a boat or 
a wedge, the identification of g ~ ,  .YE, &R with the effects of the spray root is reasonable. 
However, in other situations such an identification might not be desirable. 
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function @ (which in general requires a constitutive equation) on the right-hand side 
of (4.8) can be used to model this energy loss. Physically we require the energy lost to 
spray formation to be nonnegative (i.e. @ 2 0) ,  so that by (4.8) the spray drag increases 
with increased dissipation (or energy loss). In this connexion, it may be recalled that, 
in the present formulation of the problem, the fluid flows towards the bow of the boat 
so that u1 2 0. Moreover, by (3.20e) and the remark made following (3.21), it is clear 
that @ = 0 and gR = 0 when k vanishes. 

Although we have already calculated the drag gT, it is possible to avoid evaluating 
the integrals in (4.4d, e) by using an alternative procedure. Thus, with the help of 
(3.6b), (3.17b), (3.19b) and ( 4 . 4 ~ 4  d ,  e) we have 

where S ,  and S ,  are determined by (3.233) and (3.20g), respectively. 
Before considering the equations of motion of the boat, it is necessary to charac- 

terize its shape and propulsion system. To this end, consider a set of body co-ordinates 
xi = (x’, y‘, 2’) with base vectors e; = (ei, e;, ej) fixed in the boat such that the origin 
of the co-ordinate system coincides with the boat’s centre of mass. Let F p  be the pro- 
pulsion force acting at the point rp located relative to the boat’s centre of mass and let 
W be the weight of the boat, both measured per unit length along the y direction. Since 
S a n d  d a r e  the net force and moment of the fluid on the boat and since the boat is 
regarded as a rigid body in equilibrium, the governing equations are 

9- We,+F’, = 0, d + r p x F p  = 0, (4.10a, b )  

ej = -sin eel + cos Oe,, (4.1la, b )  

(4.1lc, d )  

and where I9 and y are measured positive in the counterclockwise direction (see 
figure 2). Further, let the location of the boat’s bottom relative to its centre of mass be 
specified by 

r‘ = x’ei + q(z‘)ei, (4.12) 

where 7 is a function of x’ only. For definiteness, we confine attention to boats whose 
hulls are convex and in order to ensure that the pressure 3 is continuous we require 
in (4.12) to be twice continuously differentiable. Also, since the boat is stationary, 
without loss in generality we may set 

xm = 0. (4.13) 

where 
el = cos Oe, + sin Oe,, 

rp = xLe;+zieL, F, = -F , ( cos ye; + sin Yej) 

Once the characteristics of the boat are specified in terms of 

(4.14) 

(4.15) 

are given, in addition to the dissipation function @, then recalling also that here 
H 3  = H,,  (3.29), (3.30) and (4.10) can be used to solve for the unknowns 

0, 5, 54, Fp. (4.16) 
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FIGURE 2. Specification of boat’s characteristics: (1) the geometry of a boat’s hull defined by the 
position vector r’; (2) the boat’s orientation relative to the level bottom defined by the height 
z,, of the centre of maas (cm) and the angle 0 measured counterclockwise from the direction of 
the baae vector e, along the level bottom; and (3) the equipolent propulsion system of the boat 
defined by the propulsion force F,, the position vector r, which locates the point of action of 
F9 relative to cm and the angle y measured counterclockwise from the direction of the base 
vector el fixed in the boat. 

Also, the shape of the free surface in the downstream region can be determined by 
integrating (3.19d) subject to the boundary condition (3.21f). 

Our discussion here has been concerned with boats whose hull geometries have 
continuous curvature. This restriction has been motivated mainly by the fact that 
we have required the pressures @ and ji in ( 3 . 1 8 ~ ~  d )  to be continuous on the hull except 
possibly at the leading edge of the boat. It is possible to consider hull geometries which 
are sectionally continuous (one example being a wedge shape), effecting considerable 
analytical simplifications, but we postpone the discussion of the planing of a wedge 
until $$6 and 7. 

5. Transition to planing of a boat-like body 
As an application of the theory of the previous sections, we study here the transition 

to planing of a free-floating, self-propelled, boat-like body. The solution to this 
problem is obtained with the aid of a computer program developed to solve the five 
scalar equations resulting from (3.29), (3.30) and (4.10). Once the function 4 (which 
describes the vertical location of points aIong the boat’s bottom) is known or specified, 
then these equations may be regarded as algebraic or essentially algebraic in that they 
also involve definite integrals. In  our computer program, these integrals are evaluated 
using a twelve-point (including endpoints) Gaussian quadrature scheme by the sub- 
routine GB and the essentially algebraic equations are solved using a Newton- 
Raphson iteration procedure by the subroutine SIMEQ. [The subroutine GB is 
available in the Computer Center of the University of California, Berkeley (U.C.B.) 
and the subroutine SIMEQ was made available by Professor C. W. Radcliffe of the 
Department of Mechanical Engineering at  U.C.B.] 

Although our development is applicable to a fairly general class of hull geometries, 
as remarked in Q 3 we confine attention to hull geometries which are convex and have 
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continuous curvature. The latter requirement is motivated by the observation that, 
within the scope of the theory employed, the pressure @ acting on the boat’s bottom 
(or its hull) determined from (3 .18~)  is seen to be continuous if the hull shape has 
continuous curvature (i.e. q5xx continuous). Keeping this in mind, we specify the 
function 7 in (4.12) to be of the form 

Ba (2’ - b)2 
2 

ql - 1 + e l3W-b)  - B(x‘ - b )  - 

7 b ’ )  = 71 
Ayx’ - a)2 

2 
ql - 1 + e-A(x‘-a) + A (2’ - a) - I for a d 2‘ d bl (5.1) 

for x’ > b, 

for x’ < a, I 
where q,, A, B, a, b are constants. For the particular example to be considered, these 
constants and the equilibrium depth Hl are specified by 

(5.2a, b, c) ql = - 0.5 m, A = 0-8 m-l, B = 6.0 m-l, 

a = -0.9 m, b = 1.2 m, H ,  = 10.0 m. ( 5 . 2 4  e, f 1 
In addition to (5.i), the weight W per unit length of the boat-like body, the propulsion 
angle y in (4.11d) and the co-ordinates xi, za of the point of action of the propulsion 
force and the rate of energy dissipation @ are taken to be 

W = 7000Nm-l, y = 0*0rad, xi = 1-2m, za = -0*82m, @ = 0, 

(5.3a, b, c, d ,  e )  
where all quantities in (5.2) and (5.3) are specified in SI units. 

It was noted in $ 3  that (3.5) may be solved in terms of an elliptic integral of the 
first kind. While (3.19d) may be solved similarly, it is necessary to find the roots of the 
cubic polynomial on the right-hand side of (3.19d) before the resulting integral can be 
reduced to the Legendre standard form of the elliptic integral of the first kind which is 
tabulated. However, without actually solving for the wave in the trailing regions, the 
analytical form of the solution of the differential equation (3.19d) can be exploited to 
determine some of its characteristic features. The stationary values of the function q5 
(i.e. values at  which q5, vanishes) occur at the roots dl, and q53 of the cubic poly- 
nomial on the right-hand side of (3.19d). Recalling the remarks made at the end of $ 4  
[between (4.13) and (4.16)], once the depth Hl, the velocity u1 and the orientation of 
the boat are known, we can solve for q51, and q53 and then the character of the wave 
in the trailing region is also determined. Although it is possible to categorize different 
cases corresponding to different wave-like characters in the trailing region, we only 
mention three cases of particular interest here: 

and q53 be real numbers such that q51 > H1 > q52 > 93 and let 
H ,  be such that q51 > H, B d2. Under these circumstances, the height of the free surface 
in the trailing region oscillates about the equilibrium value H, and attains its maximum 
and minimum values dl and 

Case (2). Let q51, q52 and q53 be real numbers such that two of the roots coalesce 
q51 > H ,  > q52 = 5b3 and let H ,  and K,  be such that q51 > H, > O2 and K, < 0. Under 
these circumstances, the wavelength of the wave in the trailing region is infinite and 
the height of the free surface decreases monotonically from the value H, at  the trailing 
edge of the boat to the value q52 at distances far away from the boat. 

Case (1). Let 

respectively. 
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FIQURE 3. Solution of the problem of transition to planing of the boat defined by (5.1)-(5.3) for 
several configurations corresponding to different depth Froude numbera P : (a) equilibrium 
configuration, F = 0; (b) slow speed, P = 0.0202; (c) approximate hump speed, P = 0.1814; 
and (d) speed of minimum wave amplitude, P = 0.7168. 

Case (3). Let #1 be a real number #1 > H, with q52 and #3 being complex conjugates 
of each other and let H ,  and K, be such that dl > H4 and K, c 0. Under these circum- 
stances, no wave-like solution exists in the trailing region. The height of the free 
surface monotonically decreases from the value H, at  the trailing edge of the boat to 
zero at some finite distance from the boat. 

Clearly, in principle, the solution of (3.19d) may be reduced to the Legendre standard 
form of the elliptic integral of the first kind. But such an analytical reduction is quite 
cumbersome, and it is more convenient to obtain the solution for the free surface in the 
trailing region numerically. For this purpose, we solve for P and P from (3.1 c, d) : 

Then, from (5.4b) and (3.3) readily follows the following differential equation: 

Qk2##zx - @?$: + - Sq5 + k2 = 0, (5.5) 

which determines the height of the free surface in the trailing region. For regions 
containing a free top surface, the complete solution is obtained from the solution of 
( 5 4 ,  (6.4) and ( 3 . 1 ~ ) .  We observe that the conditions (3.20u,, b, c) show that the 
quantities k, 9 and #x are continuous at the boat's trailing edge; and, in the trailing 
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region, the constant S is equated to S, which is given by (3.20 f ). Since q 5 ~ ,  its derivative 
q 5 i x  and the flow rate k are determined in the course of solving the equations (3.29), 
(3.30) and (4.10), they can be used to specify the boundary conditions for the solution 
of the differential equation ( 5 4 ,  which is solved numerically using a fifth-order 
Runge-Kutta integration scheme by the subroutine RK5. [The subroutine RK5 is 
available in the U.C.B. Computer Center.] 

The numerical results of the solution for the example considered are presented in 
figures 3-5. Fig. 3(a-d) displays the solution for the boat and the shape of the free 
surfaces pictorially for a range of values of the depth Froude number F. As F increases 
from zero to a critical value, the solution predicts that the wave amplitude first 
increases to a maximum (close to the value indicated in figure 3 (c)), then decreases to 
a minimum (close to the value in figure 3(d)), and increases again until the critical 
value of F is attained. For F below the critical value, the solution is described by 
case (1)  discussed above, so that the free surface in the trailing region is wave-like 
and oscillates about its equilibrium height H I .  A t  the critical value of F, the two roots 
q52 and q5, coalesce to a single value so that the solution in the trailing region is one in 
which the free surface descends monotonically to this value (case (2) above). The shape 
of the free surface just described represents a wave with an infinite wavelength and is 
reminiscent of the shape of the free surface in the downstream region of a sluice gate. 
[The interrelationship between the solutions representing a sluice-like and boat-like 
behaviour in the trailing region was also noted by Benjamin (1956) in a different 
context.] As the Froude number increases above the critical value, the solution is 
described by case (3) above, so that the free surface in the trailing region can no longer 
oscillate about its equilibrium height. Consequently, for speeds corresponding to 
Froude numbers greater than this critical value, which for the numerical example 
under discussion is approximately F = 0.9491, no wave-like solution is possible.? 

In his analysis of a wedge-shaped boat, Squire (1957) assumes that the flow separates 
from the wedge’s bottom edge at all speeds above zero. In  the context of the direct 
approach of this paper, such an assumption would require abandoning the condition 
that the pressure be atmospheric on the boat’s bottom at its trailing edge and is 
further discussed in $7. By contrast, in the present formulation of the problem, the 
location of the trailing edge is determined by the nonlinear condition (3.30). A con- 
sequence of this condition is shown in figure 3 (b ) ,  where, at slow speeds, the flow sepa- 
rates from the hull at a point on the back of the boat. 

The hump speed is usually defined to be the speed at  which the boat experiences 
maximum ‘resistance’ to motion (see for example Saunders (1957)). Although in this 
definition the term ‘resistance ’ is somewhat vague and can be taken to mean either the 
horizontal drag on the boat or the boat’s propulsion force, the latter interpretation 
has been employed for the presentation of the numerical results in figure 3 (c). In order 
to predict the hump speed phenomenon, Squire (1957) introduces a frictional drag 

t The existence of a critical speed beyond which no wave-like solutions exist is not entirely 
unfamiliar even in the three-dimensional theory of an inviscid incompressible fluid in irrotational 
motions. I f  this three-dimensional theory is linearized about the two-dimensional uniform stream 
solution, then it can be shown that no wave-like solutions exist for supercritical Froude numbers 
( P  > 1). This same result may also be derived using the theory of fluid sheets of this paper. We 
note, however, that the solution presented here is nonlinear so that one should not expect the 
critical value of F to be exactly unity. 
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FIGURE 4. (a, b, c) Transition t o  planing of a boat, several aspects of the solution: (a) the sinkage 
Az = z,,,,,,-z,, in metres, where z,,,,,, = 10.25420 m; (b)  the bow-up trim angle A0 = 0,-0 in 
radians, where 0, = -0.064262 rad; and (c) the normalized propulsion force F J W ,  where 
curves A and B represent the inviscid and viscous results, respectively, and where the weight 
of the boat W = 7000 Nm-l. (d, e , f )  Transition to planing of a boat, several aspects of the 
solution pertaining to net forces and moments (about the boat's centre of mass) exerted by 
the fluid on the boat, normalized by the weight of the boat W = 7000 Nm-1: (d )  the normalized 
total drag g T / W  (curve A )  due to the normalized drag forces g p / W  (curve B) and ~ E / W  
(curve C); (e) the normalized total lift g T / W  (curve A )  due to the normalized lift forces 
Y p / W  (curve B) and ~ R / W  (curve C ) ;  and ( f )  the normalized total bow-up moment A T / W  
(curve A )  due to the normalized moments A p / W  (curve B) and A R / W  (curve C), each 
measured in metres. 

term and concludes that, for a wedge planing at  constant trim angle, the hump speed is 
determined solely by viscous effects. The numerical results presented in figure 4 for 
the example of the transition to planing of a boat considered here show that the hump 
speed can be predicted by a purely inviscid theory. Furthermore, detailed examination 
of figure 4 suggests that the dominant mechanism governing the hump speed pheno- 
menon is the change in trim angle. In  view of this observation, it appears more natural 
to define the hump speed for planing crafts as the speed at  which the bow-up trim angle 
becomes a maximum. Such a definition is also free of the difficulty that, although the 
propulsion force reaches a local maximum near the hump speed, i t  may attain an 
absolute maximum at  a speed far in excess of the hump speed. 

Since the wedge considered by Squire (1957) planes at constant trim angle and no 
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FIGURE 6. Variation of the wetted length defined by (5.6) in the solution for the transition to 
planing of a boat. The curves A and B represent the values in metres of 36 and 3; which locate, 
respectively, the leading and trailing edges of the boat relative to the body co-ordinate x’ along 
the direction of e; shown in figure 2. 

resultants are introduced, knowledge of the lift on the wedge and the wedge angle is 
enough to determine the drag due to the pressure on the wedge’s bottom. On the other 
hand, here we consider general hull shapes, allow the trim angle to change, and 
introduce resultants which may be used to model the effects of the spray root at  the 
boat’s leading edge. Consequently, in the present analysis, the drag and the lift due 
to the pressure on the boat’s bottom are no longer related in a simple manner. A further 
discussion of this point is included in $7. 

Inspection of figure 4 (d )  and 4 (e) shows that, as far as drag and lift are concerned, 
pressure effects dominate resultant effects a t  low speeds and vice versa at high speeds. 
If we identify the effects of forces and moment due to resultants with effects of the 
spray root, then the discussion would be similar to that of Squire (1957, p. 59 and 
figure 7). 

Figure 5 exhibits the quantities xi and xi which, respectively, locate the boat’s 
leading and trailing edges relative to the boat co-ordinate 2‘. Examination of figure 5 
reveals that xi very rapidly decreases to the value xi = b in (5.2). In  addition, 
continues to increase and the length 

of the wetted surface continues to decrease. 
In the course of computation of the example discussed above, it was also observed 

that for slow speeds (F < 0.1413) the pressure difference fi  -po became negative in the 
neighbourhood of the leading edge; this negative pressure difference is also mentioned 
by Saunders (1957, p. 205) but in a different context. From physical considerations, 
it  is not possible for an inviscid fluid in the absence of surface tension to sustain a 
negative pressure difference @ - p o .  In spite of this, we must remember that the net 
force acting on the boat is composed of two parts: one due to the pressure distribution 
@ - p o  and the other due to the resultants gR, 2ZR at its leading edge. Since it is the 
negative of this net force which appears in the integral balance law of linear momentum 
of the fluid sheet and since all balance laws are satisfied exactly by the present solution, 

1 = xi-.; (5.6) 
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it is not clear to what extent we should expect @ - p ,  to be nonnegative near the bow 
of the boat. It is possible, however, to define an associated nonnegative function A@ 
for the pressure difference namely A@ = @ -po  if 9 -po  2 0 or A@ = 0 if @ -po < 0, 
and employ this function in place of 9 -po  in carrying out the numerical evaluation 
of the integrals in (4.4e, g,  i). If this associated function A@ is used, then the quantita- 
tive results presented in figures 3 and 4 would be altered slightly but qualitatively 
there would be no change. It should be noted also that, in the calculations for most of 
the range of Froude number considered (approximately F 2 0.1413), the pressure 
difference is never negative and hence A$ = fio-p0 for x3 < x < x4. 

Experience suggests that a t  slow speeds there will be a wave just ahead of the boat 
whose amplitude decays quite rapidly at  distances away from the boat. In  the solution 
presented here (figures 3-5), it is assumed that far ahead of the boat the fluid flows as a 
uniform stream and this leads to the result that the only possible solution is the 
uniform stream for the whole region ahead of the boat (recall that in the analysis of 
the boat problem presented here, only speeds for which F < 1 have been considered). 
Therefore, it is not too surprising that the direct theory of this paper does not com- 
pletely describe the motion in the neighbourhood of the boat’s leading edge. If, on the 
other hand, it is desired to allow for a wave in the leading region, then more information 
about the boat’s leading edge would be required and the solution would be corres- 
pondingly more complex. 

In  the context of the present formulation of the problem of transition to planing, it 
should be clear that other hull geometries can be analyzed similarly and without 
further difficulties. This may be contrasted with the fact that the linear analytical 
techniques commonly used to discuss the planing of a boat with a simple hull geometry 
(for references, see Wehausen & Laitone 1960) necessarily become more intricate 
when more general hull geometries are to be considered. 

Since the inviscid theory cannot completely predict the drag force, it  was felt 
desirable to consider the effect of viscous drag and examine to what extent the absence 
of viscous effects influences the accurate prediction of the boat’s orientation. To this 
end, a frictional drag force was calculated with the use of an empirical formula which 
utilizes the coefficient of friction C, given by the I.T.C.C. 1957 model-ship correlation 
line (see Comstock 1967). Then, the resultant forces and moment applied to the boat 
were calculated by assuming that the frictional drag force acts along the tangent to 
the boat’s bottom surface. After generalizing the equations of motion (4.10) to include 
frictional effects, the example of the transition to planing was reconsidered. The 
predictions of the sinkage and the bow-up trim angle were found to be almost identical 
to those shown in figures 4(a, b ) ,  which confirms the assumption that the orientation 
of the boat can be accurately predicted by a purely inviscid theory. Supplementary to 
this, the propulsion force was also calculated in the presence of viscous drag. As to be 
expected, it was found that the effect of viscosity becomes progressively moreimportant 
at  higher speeds. The result of this calculation for the propulsion force is shown by 
curve B in figure 4 (c) . 
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6. Equations governing the motion of a free-floating wedge 
Authors who have previously dealt with the planing problem have often confined 

attention to plane hull geometries, evidently due to the mathematical simplifkations 
associated with such shapes. Squire (1957), for example, employs the linearized three- 
dimensional equations of an incompressible inviscid fluid and considers the planing of 
a wedge over a fluid of infinite depth. In  addition, he restricts the motion of the wedge 
in such a way that the trim angle is constant. Motivated partly by Squire’s analysis, 
we consider in this section the planing of a wedge over a fluid of finite depth but also 
allow the wedge to float freely. For this purpose, it is necessary to introduce a slight 
modification of the previous formulation of the planing problem (@3-4) in order to 
allow the treatment of a wedge which has a hull geometry with a discontinuous slope 
at its bottom corner (the previous formulation in $83-4 dealt with hull geometries 
which have continuous curvature). Furthermore, we assume that the back surface of 
the wedge is never vertical. 

In  his treatment of the planing of a wedge, Squire (1957) assumes that the flow 
separates from the wedge’s bottom corner for all speeds above zero and sets the 
atmospheric pressure at this corner equal to zero. In  the context of the direct approach 
of this paper, we saw in $ 3 that the location of the trailing edge is determined by the 
condition (3.30) which requires the pressure difference $-po  to vanish there. When 
using the direct approach to study the motion of a wedge, it is preferable to abandon 
this condition and instead to specify the location of the trailing edge to be the wedge’s 
bottom corner. It then follows that the pressure difference @ - p 0  will not, in general, 
vanish there. 

Although the predictions of a theory which assumes the flow separates from the 
wedge’s bottom corner at  all speeds above zero have definite limitations at very slow 
speeds, we follow Squire and assume that the fluid separates smoothly from the wedge 
corner. As in $3, this problem can also be analysed by considering separately the three 
regions shown schematically in figure 1. In regions I and I11 the equations of motion 
of the fluid are given by (3.17) and (3.19), respectively, and those in region I1 reduce to 

# = H ~ + K ~ ( X - X ~ ) ,  #U = kz, (6.1 a, b) 

( 6 . 1 ~ )  

( 6 . l d )  

(6 . le )  

C, = +p*$u(u2+&w2+g#)+pu = p*kzB+pokz,  (6-l.f) 

where x = x4 locates the corner of the wedge, H4 is the height of this corner and K3 is 
the slope of the wedge’s planing surface. 

In order to match the solutions in the three regions, w e  again use the jump conditions 
associated with the integral conservation laws. We introduce the resultants (3.1 l),  
as well as the matching condit,ions (3.12) and (3.14), and also require the fluid to 
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separate smoothly from the trailing edge so that the matching conditions (3.15) and 
(3.16) still hold. In  view of the simplification associated with the planing of a wedge, 
the results (3.20) now hold and K, = K,. 

We again assume that far ahead of the wedge the fluid flows as a uniform stream, 
impose the conditions (3.22) and obtain the results (3.23). Confining attention to the 
range of speeds for which the Froude number 0 -= F < 1, it follows from the develop- 
ment in $ 3  that the only solution ahead of the wedge is the uniform stream solution 
(3.28). We also recall from $$3 and 5 that the solution of (3.19d) for the free surface 
can be obtained in terms of an elliptic integral of the first kind or solved numerically 
by using (5.6). 

Next, we recall from $ 3 that the location of the leading edge is determined by the 
condition (3.29). Using (3.20b), (3.28) and (3.29) we have 

where x = x, locates the leading edge. Since K, is never zero we may use (6.1 a) in 
(6.2) to obtain 

2, = x4+-. 

In order to determine the orientation (relative to the fixed bottom) of the wedge, we 
turn to a discussion of the equations of motion of a free-floating body. First we note 
that the formulae (4.1)-(4.6) and (4.11)-(4.13), as well as the equations of motion 
(4.10), also hold for the wedge. However, due to the simplicity of the hull geometry of 
the wedge, the integrals defining gP, 2Zp and AP in (4.4) can be evaluated analytically. 
Thus, with the help of (4.4), (7.1) and (7.2), by integration we obtain 

(6.3) 
Hl - H4 

K3 

B ( H l - H , ) - ~ g ( H a , - H 4 ) + a k 2 ( 1 - g K % )  ( 6 . 4 ~ )  

1 
Yp= --ap, 

K3 
(6.4b) 

x SB(H;-Hi) - $g(H;-  Hi) - )k2(1 - 4KE)ln- , ( 6 . 4 ~ )  

where ( 3 . 2 0 ~ )  and (3.21 a)  have been used. Assuming that the back surface of the wedge 
is not perpendicular to the wedge’s bottom surface, we may specify the hull geometry 
of the wedge by 

[ H1l H4 

- -  
71 for x’ < x;, 

q(z‘) = (II, + K(x‘ -x4) for x’ > xi, 

where ql and K are constants and x‘ = xi locates the bottom corner of the wedge with 
respect to the body co-ordinate system xi [introduced in $ 4  following (4.9)]. With this 
specification, we may use (4.1), (4.2), (4.11), (4.12), (4.13), ( 6 . 1 ~ )  and (6.5) to conclude 
that 

x = x’cos8-qlsin8, (i5 = ~,+x’sin8+r] ,cos~ (x’ < xi), (6.6a, b)  
M well as 

K ,  = tan 8, x4 = cog 8 - ql sin 8, (6.7a, b)  
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Z, = H, - xisin 8 - q,cos 8. ( 6 . 7 ~ )  

Once the characteristics of the free-floating wedge are specified in terms of 

and the parameters (4.15) as well as the dissipation function 0 are known, then (4.4), 
(4.6), (4.10a, b) ,  (4.13), (6.3), (6.4) and (6.7) can be used to solve for the unknowns 
(4.16). 

Before closing this section, we note that Squire (1957) considers the motion of a wedge 
with a constant trim angle, while in the above development the trim angle is allowed 
to change. The case of a constant trim angle, however, can be dealt with by simply 
applying an external trim moment dext = Aext e2 which can maintain a constant 
trim angle throughout the motion. Such an external trim moment is calculated from 
the angular momentum equation, i.e. 

JlteXt+.M+rpx Fp = 0, (6.9) 

which differs from (4.10b) due to the presence of the external trim moment. Under these 
circumstances, 8 (defined in (4.11)) is specified and the procedure for obtaining the 
solutions for the unknowns 

$3, x4, F,, d e x t  (6.10) 

is the same as that discussed above except that (4.10b) isreplacedby (6.9), from which 
.Mext can be calculated. 

Now in line with ( 4 4 ,  let the net resultant force S’, applied by the fluid on  the 
wedge, be expressed in the form 

S R  = gRe,+L??Re3. (6.11) 

Then, on substitution of (3.20) and (4.6) into (6.10), we obtain 

(6.12) 

From the expression (4.1) for the position vector F of the top surface of the fluid, the 
tangent vector to the wedge’s bottom surface is rz = el + K3e3 (since q5 is given by 
( 6 . 1 ~ ) ) ;  and it is then clear that, in general, SR is not perpendicular to the wedge’s 
bottom surface. But, this is only one part of the net force S i n  ( 4 . 5 ~ ) .  The remaining 
part, which is due to the integrated effect of the pressure, is always normal to the 
wedge’s bottom surface. It seems reasonable to expect that, if the problem were 
formulated with the use of the nonlinear three-hmensional theory, no discontinuities 
would be present and the net force would act normal to the wedge’s bottom surface. 
We observe that, in the context of the theory of fluid sheets employed here, it is poss- 
ible to require SR in (6.12) to act normal to the wedge’s bottom surface by specifying 
the rate of energy dissipation 0 to be of the form 

(6.13) 

Under these circumstances the drag gT and lift LET are simply related by the formula 

gT = - K3997 (6.14) 

and it follows that the net force S a c t s  normal to the wedge’s bottom surface. 
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7. Two examples of free-floating bodies: a wedge-like boat and a wedge 
In line with the remarks made in $6,  we consider here two examples concerning the 

transition to planing of a wedge-like boat and a wedge; a wedge-like boat is one whose 
hull geometry has continuous curvature and yet is wedge-like in shape. Our aim is to 
examine to what extent the more simplified formulation of the wedge can be used to 
predict the main features of the planing problem. 

It was assumed in $ 6  that the fluid separates smoothly from the wedge’s bottom 
corner for all speeds above zero. Under this condition, as noted earlier [see remarks 
preceding (6. l)], the resulting predictions have definite limitations at very slow speeds. 
In order to estimate the quantitative nature of these limitations, we compare the 
predictions of the theory of $5  3 and 4 for a wedge-like boat with those of $6 for a wedge. 

First, we consider a wedge-like boat byspecifying its equilibrium depth H ,  and the 
function 7 in (4.12) to be of the form (5.1) with 

(7.1) 

where the quantities W ,  y ,  xb, zI, and the dissipation function @ are given by (5.3). 
Again we use the same computer program as that discussed in $ 5  to solve for the 
motion of the wedge-like boat. The curves labelled A in figure 6(a, b,  c) represent, 
respectively, the resulting solution for the quantities zm, 0 and F ! / V .  

Next, we use the theory of $6 to consider the motion of a free-floating wedge 
specified by (6.5) and, in order for this wedge to correspond to the wedge-like boat as 
closely as possible, we take 

I ql = -0*5m, A = Om-l, B = lOm-l, 

a = -8*8m, b = 1.2m, H, = 10m, 

ql = -0-5m, K = 8.144m, x; = 1.2m, x, = 1Om (7.2) 

and again suppose that quantities W ,  y ,  xi, Z; and @ are given by (5.3). Here it should 
be noted that, in assuming that the fluid separates from the wedge’s bottom corner, 
the numerical value of K in (6.5) does not influence the solution for the motion of a 
wedge. The equations (4. lo), (6.4) and (6.7) can then be used to solve by iteration for 
the unknowns (4.6) with the aid of a computer program which is even simpler than 
that used in $ 5 .  The curves labelled B in figure 6 (a, b,  c) represent, respectively, the 
resulting solution for the quantities zm, 0 and FJ W .  

An examination of figure 6 (a, b, c) reveals that the quantitative differences between 
the curves A and B are relatively small except near zero speed and near the hump 
speed. Moreover, these results appear to be qualitatively the same as those obtained 
in $5.  

We now briefly consider to what extent the direct approach of this paper can be 
used to formulate the wedge problem for a range of speeds which includes the zero 
speed. This can be done by introducing resultants analogous to those in (3.11) but 
acting at  the corner of the wedge and by exploiting a condition similar to (3.30). For 
this purpose, let the wedge’s back surface be specified by 

$ = H,+R,(z-x,), (7.3) 

where K5 is a constant and let x = x5 locate the trailing edge on this surface. Taking 
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FIGURE 6. Transition to planing of a wedge and a wedge-like boat, some aspects of the solutions 
represented by dashed curves (wedge) and solid curves (wedge-like boat): (a) the height of the 
centre of mam z,, in metres; ( b )  the value of 19 in radians; and (c) the normalized propulsion 
force F J W ,  where the weight of the boat W = 7000 N m-l. 

@ = 0, we may use (3 .30)  to determine the height of the trailing edge q51z=zs = Hs by 
the condition 

where (3 .20 f ) ,  (3 .21a) ,  ( 3 . 2 3 ~ )  and (7 .3 )  have also been used. 

wedge shapes of interest the slope of the back surface is so large that 
When the speed u1 = 0, k = 0 and the solution of (7 .4)  is H, = H,. Now for many 

gq- 1 > 0.  (7 .5)  

It therefore follows that there exists a finite speed range (which excludes the value 
zero but includes speeds which are arbitrarily close to zero) for which 

H5 > H,. (7.6) 

Since physically we expect H5 < H,, this alternative formulation of the wedge problem 
should be discarded. It is of interest, however, to note that this deficiency is caused by 
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the fact that the idealization of a wedge-shaped boat requires the curvature to be 
zero on its back surface. 

The results reported here were obtained in the course of research supported by the 
U.S. Office of Naval R,esearch under Contract NOOO14-764-0474, Project NR 062-534 
with the University of California, Berkeley. 

Appendix 
We include here a brief development of the jump conditions utilized in the formu- 

lation of the flow past an obstacle given in $83 and 4. These jump conditions, which 
are associated with the restricted theory of a directed fluid sheet (Green & Naghdi 
1977), are applicable to the steady two-dimensional motion of an incompressible 
homogeneous inviscid fluid over a level bottom. We recall from $2 that, for two- 
dimensional motion in the x, z plane, we may identify y with O2 and set x = x(O1, t ) .  
Then, it follows from the form of the position vector r in ( 2 . 3 ~ )  that the base vectors 
a, (i = 1,2,3) and their reciprocals a2 are given by 

a1 = a-la,, a2 = a2, a3 = a3, J 
where the function @ and the basis ei are defined in $2 and 

We also recall that the quantities S a  and s defined in Green & Naghdi (1977) in the case 
of two-dimensional motions can, without loss in generality, be specified by 

a W  = Be,, S2 = 0, (I + @i)*s = se,, (A 3) 

where S and s which occur in (2.7a, b) are arbitrary functions of x and t .  Consider a 
singular curve (or a curve of discontinuity) on the surface d of the directed fluid 
sheet V. For the present purpose, it will suffice to assume the singular curve to be 
stationary and identify its fixed location by the line x = x3 (corresponding to the leading 
edge of the body in $3). Then, with the help of (A3), as well as the balance laws of the 
theory of a directed fluid sheet (see, for example, (6.4) of Naghdi 1979), the jump 
conditions for two-dimensional motions over a level bottom are? 

where the notation [f13 for the jump infacross 2 = x3 is defined by (3.13), the relations 
(2.13a, b) have been employed, 

E = 1/12, SZ = gpk. 
The belanee lam used here correspond to those used by Naghdi (1979) if we put k = 0, 
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[@+,u+*(p-@)w]dx, L . W  =lim 

and where the terms E ,  ql and r, represent, respectively, the internal energy per unit 
mass, the component of the heat flux vector per unit length along a1 and the rate of 
heat supply per unit mass due to the fluxes through the top and bottom surfaces of 
the fluid sheet. The conditions (A 4) represent the jumps associated with the balance 
of mass, linear momentum, director momentum and energy, respectively. Since in the 
present paper the position vector r and director d are assumed to be continuous across 
the singular curve, the jump conditions associated with angular momentum is 
identically satisfied. Furthermore, we note that in dehing the resultants F, L, 
F . V, L . W and in (A 5 )  it has been assumed that the pressures f3 and j?, as well aa the 
rate of heat supply r, may be unbounded on the singular line. 

It is now convenient to recall from the appendix of Green & Naghdi (1976a) the 
results that in regions free of discontinuities and for an inviscid incompressible fluid at 
constant temperature : 

where we have used the fact that r, arises from contributions of the heat flux through 
the top and bottom surfaces of the fluid sheet. Although (A 6) holds in regions free of 
discontinuities, it is still possible for r, to be unbounded on x = x3 and for the resultant 
Q, in (A 5 )  to be non-zero there. 

Next, we combine the expressions F . V and L . W in (A 5) and use (2.13a, b) to 
obtain the rate of work expression 

E = constant, q1 = 0, r, = 0, (A 6) 

x8+8 a$ 
F . V + L . W = l i m  -4 -ax. 

8+0 / - -8  at 

Clearly, if the motion is steady, then a$/& = 0 and we conclude that 

F . V + L . W  = 0. (A 8) 

It then follows from the first two of (A 6) and (A 8) that the component forms of the 
jump conditions (A 4) are given by 

(A 9) 

(A 10) 

F = F,e,+F!e,, L = Lle ,  + La+ (A 11) 

i "p*$u13 = 0, "p*$u2+r)la = J',, 

Ub*$uwllS = F3, U & ~ * $ ~ w l l ~  = L3, 
[tp*$u (u2 + +w2 + g$) +pula = - @, 

Usla = Ll, 
and 

where J',, F3, L,, L3 are the nonzero components of F, L referred to the basis e,, i.e. 



374 P .  M .  Naghdi and M .  B. Rubin 

REFERENCES 

BENJAMIN, T. B. 1956 On the flow in channels when rigid obstacles are placed in the stream. 

CAULK, D. A. 1976 On the problem of fluid flow under a sluice gate. Int. J. Eryng Sci. 14, 

COMSTOCK, J .  P. 1967 Principles of Naval Architecture. SOC. Naval Arch. Marine Eng. 
CIJMBERBATCH, E. 1958 Two-dimensional planing at high Froude number. J. Fluid Mech. 4, 

GREEN, A. E. & NAGHDI, P. M. 1976a Directed fluid sheets. Proc. Roy. SOC. A 347, 447-473. 
GREEN, A. E. & NAORDI, P. M. 1976 b A derivation of equations for wave propagation in water 

GREEN, A. E. & NAOHDI, P. M. 1977 Water waves in a nonhomogeneous incompressible fluid. 

HAUSSLING, H. J. & VAN ESELTINE, R. T. 1976 Numerical solution of planing body problems. 

KAR&, T. VON & BIOT, M. 1940 Mathematical Method8 in Engineering. McGraw-Hill. 
KELLER, J. B. & WEITZ, M. L. 1957 A theory of thin jets. Proc. 9th Int. Congr. A w l .  Mech. 

LAMB, H. 1932 Hydrodynamice, 6th edn. Cambridge University Press. 
NAOHDI, P. M. 1979 Fluid jets and fluid sheets: a direct formulation. Proc. 12th Symp. on Nava2 

PEREGRINE, D. H. 1972 Equations for water waves and the approximation behind them. In 

SAUNDERS, H. E. 1957 Hydrodynamics in Ship Design, vol. 1, SOC. Naval Arch. Marine Eng. 
SQUIRE, H. B. 1957 The motion of a simple wedge along the water surface. Proc. Roy. SOC. A 

243, 48-64. 
WEHAUSEN, J. V. & LAITONE, E. V. 1960 Surface waves. In Handbuch der Physik (ed. S. 

Fliigge), vol. IX, pp. 446-778. Springer. 

J .  Fluid Mech. 1, 227-248. 

1116-1125. 

466-478. 

of variable depth. J. Fluid Mech. 78, 237-246. 

J .  A w l .  Mech. 44, 523-528. 

DavM W .  Taylor Naval Ship R & D Center Rep. 76-0118. 

Bmaele, Belgium 1956, vol. 1, pp. 316-323. 

Hydrodynamk, pp. 500-515. National Academy of Sciences, Washington, D.C. 

Waves 012 Beach,  pp. 96-121. Academic. 




